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ABSTRACT

We study the width of the semiclassical
phase distribution of a quantum state in its
dependence on the average number of photons
(m) in this state. As a measure of phase
noise, we choose the width Aqo of the best
Gaussian approximation to the dominant
peak of this probability curve. For a coherent
state this width decreases with the square root
of (m) , whereas for a truncated phase state it
decreases linearly with increasing (m). For
an optimal phase state, Aqo decreases
exponentially -- but so does the area "caught"
underneath the peak: All the probability is
stored in the broad wings of the distribution.

I. INTRODUCTION

The ultimate quantum limit in the goal of
optically detecting gravitational waves is to
operate a Michelson interferometer with light
in a quantum state that minimizes the phase
noise at a given mean number of photons
(Ref. 1). But what is a good measure for phase
noise? Should we consider the inverse peak
height of the probability distribution (Ref. 2)
-- the so-called reciprocal likelihood -- or
perhaps the second moment of the phase
distribution (Ref. 3) or even the periodic
measure advocated in Refs. 4 and 5? These
are all based on the idea of a phase
distribution -- but we recall that this in itself
is not a trivial construction since the concept
of a Hermitian phase operator is not without
complications (Ref. 6).

In the present paper we therefore start
from the semiclassical phase distribution

Wm[ly)] of a quantum state Iy> (Refs. 7 and
8). We consider states that have a single

pronounced maximum of W_0 at a phase value
that, without loss of generality, we take at _ =
0. We approximate (Ref. 9) this peak by a
Gaussian distribution with an identical

height of W¢=o. The distribution's width A_0
is determined by the curvature of W@ at _=0,

together with Win=0. The examples of a
coherent state I_/coh> and a truncated phase

state IVp> will illustrate this scheme: Their
widths A_ [ I ¥coh>] and A(p [lyp>] decrease as
the square root and linearly with increasing
average photon number (m), respectively. In
the case of the optimal phase state -- the state
(Ref. 2) that minimizes the reciprocal
likelihood -- we find (Ref. 9) even an
exponential decay for A_. However, in
contrast to the coherent or the truncated phase
state, the area underneath this maximum is
not normalized but decays as well (Ref. 10).
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II. FROM PHASE FUNCTIONAL TO
GAUSSIAN-APPROXIMATED
PHASE DISTRIBUTION

In this section we start from the
semiclassical phase amplitude functional
w m [I V>] of a quantum state IV> and derive a
Gaussian approximation to the dominant
maximum of this probability curve.

In the semiclassical limit the phase
distribution W m [ IV)]of a quantum state

oo

Jr>= N _m Ira>
m=O

(2.1)

represented as a superposition of photon
number states I m>, with expansion

coefficients Vm = <m I V) and the

normalization N such that <VI V> = 1, follows
from the phase functional

_

via

1 " 2

W =W + _W_0=0 m¢p=0
"b ...

{--- W 0=0 1 + _o .

(2.3)

Here primes denote differentiation with
respect to _ and we have used the property

' raN2 _ i (m-n)_/m_/n=0,
--0 = 2n m,n=0

following from Eq. (2.2b). With the help of
Eq. (2.3), we arrive at

(2.4a)

21(P - [ IW>

=_ L i (m- n)_p_2 _m_n e

2Xm,n=0
(2.2b)

For the sake of simplicity, we consider in this

article only quantum states such that Vm =

Vm > 0. Hence, for the phase value _0= 0 the

terms in the sum of Eq. (2.2b) add
constructively, whereas for _0 # 0
cancellations occur. This results in a

maximum at _o= 0.

An approximate analytical expression for
W_ [iv>] in the neighborhood of the origin

follows from an expansion of W_o into a
Taylor series around _o= 0, that is

where the width A_ of this Gaussian is given
by

A_o2 -

2W
_o=0

( m_=om2 N/m) (m___oN/m) - ( m___Om Win) 2

(2.4b)

We emphasize that thisprocedureisvalidfor

any statewhose phase probability W_o [Iv)]
enjoysa maximum at _ = 0.

The area underneath this Gaussian-
approximated peak reads as
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USS

--oo

dq0W
_=o

r"

= 4n _@ W (2.5)
_-o

This clearly demonstrates that the Gaussian
fit of the peak, Eq. (2.4), is different from the
properly normalized Gaussian G(qo) = x-l/2

(A_) -1 exp [-(¢p/Acp)2]. Whereas W (peak) is
q_

tailored to have a height identical to

W_=0 [Iv)] , the height of G, that is, _-1/2

(h_0) -1, adjusts itself to the width of the
Gaussian, so as to keep the area normalized.

m

o

E 1 Im)I_ s) = N l+m
m=0

(3.3)

recently proposed in Ref. 2.

These states are normalized to unity.
For a coherent state, Eq. (3.1), we arrive at

/m-a2_ 2

(_cohl_/coh)=(2_)-l/2a-1 _ :t_ aa J

m--0

i _2
-1/2 - m=n dine

III. PHASE NOISE AND AVERAGE
NUMBER OF PHOTONS

In this section we apply the Gaussian

approximation, Eq. (2.4a), in order to discuss
the width Aq_ , Eq. (2.4b) of the phase
distribution of:

(i) a coherent state of large displacement

a>>l,

I_/coh)=(2n)-ll4a-1/2 _ e _' 2a ] Im),

m=O

(3.1)

(ii) a truncated phase state

In

,Wp)= Cmo +1) -1/2 _ Ira),
m=O

(3.2)

and

(iii) the optimal phase state

= 1 (3.4)

where we have replaced the summation by an

integration. For the truncated phase state

Iyp) we find directly

m

,o(mo+') 1= ,,
mffi0

whereas for the optimal state I_/s), Eq. (3.3),
the normalization constant N is given

implicitly by

m o

(_slWs) = 9_2 E (1 +m)-2
m=O

=9_ 2 (k=t k-2 -k_(mo+2+k)-2),

that is, (Ref. 11)
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(02)}9_2 . 2 1 +O m .
= mo+l

Here,

_(s,v) - _(v+k) -s
k=0

(3.5)

denotes the generalized Riemann zeta
function (Ref. 12).

and the width A_ , given by Eq. (2.4b) reduces
to

Acp2 [ I_gcoh)] ___-

2

(r)dm _rn

(3.6)

A. Coherent State

For the coherent state, Eq. (3.1), the

expansion coefficients _gm read

Here, we have once again replaced
summations over m by integrations. We
evaluate the Gaussian integrals most

economically by applsing the symmetry of

_gm with respect to a zbefore performing the

integrals. This yields

oo

J' dm m2 _m = ;din (m-a2)2 t!Sm+ 2a2 fdm (m-a2) _m + a dm_gm = dm (m-a 2) _gm + 4 dm _gm

and

S = a2 2 _m_,mdmm_m dm (m-a2)_m+ dm_m = a .

This result reduces Eq. (3.6) to
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din (m-a2)2 Vrn

_dy y2exp

We now evaluate the area underneath

the Gaussian approximation, Eq. (2.5),for
the coherent state,Eq. (3.1).The maximum

value ofthe phase distributionreads

w •

(3.8)

1

2a 2
(3.7a)

The average number of photons (m)
follows from the normalization condition,

Eq. (3.4), as

(m) --SdmrnW2m

2

and hence

1 (3.7b)

for large (m). Asymptotically, the width

A_ [IVcoh)] of the phase distributionof a

coherent state decreases inversely as the

square rootofthe average photon number.

and hence the area of the Gaussian is

_u.[,_o_]-_._[,_oo_]

¢p=0
= 1. (3.9)

Thus the Gaussian approximation, Eq. (2.4)
for a coherent state is properly normalized.
Its width Aq) [IVcoh)] decreases linearly with

a but its height W_o=0 [ [_coh)] increases

linearly with a- _ to leave the area

AGaus s constant.

B. Truncated Phase State

We now turn to the discussion of the

truncated phase state l yp) , Eq. (3.2).

According to this equation, the expansion

coefficients Wm read

f

=Jl , for 0_<m<m o
Vm \ 0, form> mo

which reduces A_o[I Wp)] to
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( )21
/mo 'mo(m°/

m=O ]_m=O m=O

2

(mo+ 1)

2 1) lm2(mo+lm (too+l)(2too+ 4 o 1) 2
6 o

12

mo(mo+2)

12 (03)=--+0 m
2

m
o

(3.10)

Here, we have made use of the summation

formulae (Ref. ii)

m
o

Z l=m o ,

m=l

m
o

Zm=lm (m +1)
2 0_. O

m=l

and

m
o

Zm _
m=l

--±_oC_o÷1)(2_o+1)
6

(3.11)

When we express mo in terms of the

average number of photons

-1 mo

( ) t 1(m) = l+m o m=_.m o,
m:l

we find

 ot< (3.12)

again for large (m) . The width hq_ [1Up)] of

the phase distribution of the truncated phase
state decreases linearly with the average
photon number (m).

The value of W_0 at q)=0 reads

1 ._l/too)2
_,m=O

= (2n)-l(rno+ I)

~I
=- (m), (3.13)

)t

and yields for the area underneath the
Gaussian approximation, Eq. (2.4), of the
truncated phase state, Eq. (3.2),

(3.14)

i.e., almost perfect normalization. Again, we
note from Eqs. (3.10) and (3.13) that the width

h_ decreases with mo in the same manner

as the maximum height Win= 0 increases --
keeping the area AGauss normalized and,

more importantly, keeping it independent of

m O .
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C. Optimal PhaseState

We concludeour illustration of the
Gaussian-approximatedphasedistributionby
applyingit to the optimalphasestate I Vs},

Eq (3.3), which enjoys the expansion
coefficients

I(_+rn)-I for 0<_m<_m

' 0

, for m>m °

The width A_ [l_/s}],Eq. (2.4),then reads

a_02[ IVs>] =

2

mo

When we use the summation formulae, (Ref.

11)

m
o

Z 1f(mo) --
m---O l+m

c I [c=C+ln mo+l +O mo+l , (3.15)

where

Im_ l---Ins)=I m

= 0.577215...

is Euler's constant, and from Eq. (3.11)

m
o

Z (l+m) =
m=O

(mo+l)+lmo(mo +1)

= l(mo+l) (too+2)
2

we find

Aq)2[IVs)] = f2(m o)

m m

f(mo) _ (m+l)2_2(m+l)+l _ o
m=0 m + 1

m+l-1

m+l

[mo= f2(m O) Z(m+l)- 2(m O

Lm=O

+i)

-I

+f(m o) f(mo)- mo+l)-f(m o)

[1(=f2 (mo) _ mo

-1

+l)(mo+2)f(mo)-(mo+l) 2] •

In the large mo limit we arrive at
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I 2 ).1-1
2f (mo) 1+ 1

(mo+i)2

and with Eq. (3.15) we then have

The average number of photons in this state
reads

m
o

(m+l)=N 2 (m o) Z 1
m=0 m+l

[ 1 .oCl l=_(mo) C+'nCmo+i)'2Cmo+l) kmo/J

C,'n(mo'',O1
mo +

(3.17a)

that is,

(3.17b)

where we have defined y= e C in a standard

notation. In determining the remainder, we
have applied in the last step of Eq. (3.17a) the
asymptotic expression for N, Eq. (3.5). With

the help of Eqs. (3.17a) and (3.17b), Eq. (3.16)
reads

2
- _ (re+l)

6
A(p[ 'NJs)] = .Z.E. (m+l)l/2e

_2

+ O[(m+l> -1/2 e-'6"(m+l)],
(3.18)

which shows that the Gaussian-approximated

width A_ of the phase state 1_s> decreases

exponentially with the average number of

photons. The height

2

["W 0=(2n9_2) -1 g_2 Z(l+m)-ll

m=O J

= (2_ _)-I <re+l>2

__ u__ (m+l) 2 (3.19)
12

of the distribution increases only
quadratically. Here, we have also made use

of Eq. (3.17a). Hence, the phase probability or
area caught underneath the peak,

2

= _ (m+1>5/2 e + O (m+1>3/2

2

-_- <re+X>),
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decreases rapidly to zero with increasing
average photon number. All the probability is
stored in the broad wings of the distribution.

IV. SUMMARY AND OUTLOOK: A NEW
VARIATIONAL PROBLEM

In this article we have presented a
Gaussian approximation to the maximum of
the semiclassical phase distribution of an
arbitrary quantum state. We have illustrated
this scheme using the example of a coherent
state, a truncated phase state, and the
intriguing optimal phase state. Our main
results are summarized in Table 1. The
Gaussian-approximated width 5 9 [l_eoh)], Eq.

(3.7), of the coherent state I_coh) decreases

as the square root of the average number of
photons, whereas for a truncated phase state
Up) the width A9 []_/p)] , Eq. (3.12), decreases
linearly with (m). In both cases the Gaussian
is properly normalized, that is, the probability
caught underneath the peak is almost

identical to unity, Eqs. (3.9) and (3.14), and
independent of (m).

The situation is quite different for the
optimal phase state IVs). Here, A9 [l_/s)], Eq.

(3.18), decreases exponentially with (m), but

the maximum W_o=o It,s)l, Eq. (3.19),
increases only quadratically with (m),
leading to vanishing probability in the peak.
All probability in this case is in the broad
wings of the distribution, as is discussed in
detail in Ref. 9.

We conclude by noting that the
Gaussian approximation might lead to
insight into questions such as the existence of
a lower bound of A9 for a given fixed
number of photons (m). For that purpose we
would like all the probability to reside in the
peak, that is, AGauss = 1. From Eq. (2.5), we
find

W = --i/2 Acp-i
q,=o

which,when substitutedintoEq. (2.4b),yields

-1

-l

(4.1)

Two strategies offer themselves: (i) Use
appropriate inequalities to rewrite the
expression in square brackets in Eq. (4.1) in
terms of the average number of photons and
its variance. This might lead to a lower
bound of A9. (ii) Minimize A93, that is,
maximize the expression in square brackets,
Eq. (4.1), under the constraint of constant (m)
and phase state normalized to unity.

ACKNOWLEDGEMENTS

We would like to thank R. E. Slusher and

B. Yurke for drawing this problem to our
attention. In particular, we thank V. Akulin,
R. Bruch, C. M. Caves, R. Hellwarth, and Y.
Yamamoto for many fruitful discussions.

One of us (JPD) acknowledges H. Walther
and the Max-Planck-InstitutfiirQuantenoptik
for hospitalityand support. We also would
liketo expressour deepest appreciationto D.
Han, Y. S. Kim, and W. W. Zachary for

organizinga most splendid conference.

REFERENCES

. Caves, C. M., 1981, "Quantum-
mechanical noise in an interferometer,"
Phys. Rev. D, 23 (8), p. 1693.

, Shapiro, J. H., Shepard, S. R., and Wong,
N., 1989, "Ultimate Quantum Limits on
Phase Measurement," Phys. Rev. Lett., 62
(20), p. 2377; Shapiro, J. H. and Shepard,

307



.

.

,

.

.

.

S. R., 1991, "Quantum phase
measurement: A system-theory
perspective," Phys. Rev. D, 43 (7), p. 3795;
for a detailed discussion of related

problems, see the articles:
Shapiro, J. H., Shepard, S. R., and Wong,
N., 1989, "A New Number-Phase
Uncertainty Principle" and "Coherent
Phase States and Squeezed Phase States,"
in Quantum Optics VI, J. H. Eberly, L.
Mandel, and E. Wolf, eds., Plenum, New
York, p. 1071 and 1077; Shapiro, J. H.,
"Going Through a Quantum Phase,"
Workshop on Squeezed States and
Uncertainty Relations, NASA CP- _ ,
1991. (Paper _ of this compilation).

Summy, G. S. and Pegg, D. T., 1990,
"Phase Optimized Quantum States of
Light," Opt. Commun. 77 (1), p. 75.

Bandilla, A. and Paul, H., 1969, "Laser-
Verst_irker und Phasenunschiirfe," Ann.
Phys. (Leipzig), 23 (7), p. 323; Paul, H.,
1966, "Ein Beitrag Zur Quantentheorie
der Optischen Koh_irenz," Fortschr.
Phys., 14, p. 141.

Bandilla, A., Paul, H., and Ritze, W. R.,
"Realistic Quantum States of Light with
Minimum Phase Uncertainty," to be
published.

For a review, see: Pegg, D. and Barnett,
S., 1986, "Phase in quantum optics," J.
Phys. A, 19, p. 3849.

Schleich, W., Horowicz, R. J., and Varro,
S., 1989, "Bifurcation in the phase
probability distribution of a highly
squeezed state," Phys. Rev. A, 40 (12), p.
7405; also, 1989, "A Bifurcation in
Squeezed State Physics: But How?" in
Quantum Optics V, D. F. Walls and J.
Harvey, eds., Springer, Heidelberg;
Schleich, W. P., Dowling, J. P.,
Horowiez, R. J., and Varro, S., 1990,
"Asymptotology in Quantum Optics," in
New Frontiers in QED and Quantum
Optics, A. O. Barut, ed., Plenum Press,
New York.

The phase distribution resulting from the
newly proposed phase operator [Pegg,
D.T. and Barnett, S. M., 1988, "Unitary
Phase Operator in Quantum Mechanics,"
Europhys. Lett., 6 (6), p. 483; 1989, "Phase
properties of the quantized single-mode
electromagnetic field," Phys. Rev. A, 39
(4), p. 1665.] yields results identical to

.

10.

11.

2.

those obtained from semiclassical

quantum mechanics, as in Ref. 7.

Schleich, W. P., Dowling, J. P. and
Horowicz, R. J., 1991, "Exponential
decrease in phase uncertainty," Phys.
Rev. A, to be published.

Similar results have been reported by
Caves, C. M., Lane, A. S., and
Braunstein, S. L., "Maximum-Likelihood
Statistics of Multiple Quantum Phase
Measurements," Workshop on Squeezed
States and Uncertainty Relations, NASA
CP- __, 1991. (Paper _ of this
compilation). Moreover, simulations of a
sequence of phase measurements based
on the scheme of Ref. 2 have been
reported by, Caves, C. M., Lane, A. S.,
and Braunstein, A. S., 1991, "Maximum-
likelihood Statistics of Multiple Quantum
Phase Measurements," Proceedings of
NATO Advanced Research Workshop on
Quantum Measurements in Optics, Cortina
d'Ampezzo, 1991, P. Tombesi and D. F.
Walls, eds., Plenum Press, New York.

Hansen, E. R., 1975, A Table of Series
and Products, Prentice-Hall, Englewood
Cliffs.

Magnus, W., Oberhettinger, F., and Soni,
R. P., 1966, Formulas and Theorems for
the Special Functions, Springer Verlag,
Heidelberg.

308



Table 1. Gaussian approximation W_o = W_=0 exp [- (_o/A_O)2] for dominant maximum of the phase

distribution W_o = (2n) -1 N 2 I Era= 0 Wm exp (imp) I 2 for a coherent state I_coh), a

truncated phase state I_p> and an optimal phase state I_s) .

Width = A_o

Maximum = WO=0

Area = _ A_ W_o=0

Coherent
State

2-1/2<m>-1/2

"_/n: <m) I12

Truncated
Phase State

(m) -1

_-1 <m)

= 0.98

Optimal
Phase State

(y_/_f3) (m+ 1>1/2 exp [-Tr 2 <m+ 1)/6]

<m+l) 2

__5/2_ <m+l)Sl2
q5

exp [__2 <re+l)/6]
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